LABORATORY XOF OREST PRODUCT CHEMISTRY FACULTY OF FORESTRY MULAWARMAN UNIVERSITY

PROTOKOL 010

STANDARD OPERATING PROCEDURE			
		Date:	
Title: Total Flavonoid Content Testing Method		Created by:	
		File:	

1. OBJECTIVES

To provide instructions for performing a total flavonoid content test.

2. PRINCIPLE

The total *flavonoid content test* is carried out to determine the total flavonoid content in a sample using the colorimeter method.

3. REQUIRED COMPLETENESS

Laboratory suits, safety glasses, clean wipes/tissues.

3. MATERIALS AND TOOLS

Material	Tool	
Plant extract sample	Test tube	
Flavonoid standards (Example: Catechins)	Analytical balances	
AICI ₃	UV-Vis Spectrophotometer	
NaNO ₂	Beaker glass	
NaOH	Measuring cup	
Distilled water	Micropipettes & Tips	
Methanol		

4. PROCEDURE

4.1. PREPARATION OF TEST SOLUTION

- 4.1.1 Weigh 1 mg of extract, dissolve in 10 ml of distilled water
- 4.1.2 Weigh 1 mg of standard flavonoids, dissolve in 10 ml of distilled water
- 4.1.3 Weigh 10 gr of AlCl3, dissolve in 100 ml of methanol
- 4.1.4 Weigh 5 grams of NaNO2, dissolve in 100 ml of distilled water
- 4.1.5 Weigh 4 gr of NaOH, dissolve in 100 ml of distilled water

4.2. TOTAL FLAVONOID CONTENT TEST

4.2.1 To prepare the flavonoid standard curve, add solutions to each test tube as per the pattern in the table below;

Tube	Flavonoid Standard	Distilled	NaNo2 (µI)	AlCl ₃ (μl)	NaOH (μl)
	(μl)	water (μl)			
Tube 1	0	800	100	100	500
Tube 2	20	780	100	100	500
Tube 3	40	760	100	100	500
Tube4	60	740	100	100	500
Tube 5	80	720	100	100	500
Tube 6	100	700	100	100	500

4.2.2 For the test sample, add solutions to each test tube as per the table below and repeat 3 times;

Tube	Flavonoid Standard	Distilled	NaNo2 (µl)	AlCl ₃ (μl)	NaOH (μl)
	(μl)	water (μl)			
Tube 1	100	700	100	100	500

- 4.2.3 Incubate the solutions for 10 minutes
- 4.2.4 Absorbance with a wavelength of 510 nm

4.2.5 Create a calibration curve from the standard absorption results of flavonoids, so that the value and regeneration formula are obtained;

4.2.6 Insert the average absorbance of the sample into the regression equation;

4.2.7 Calculate total flavonoid content using the formula;

$$C = c \times \frac{v}{m}$$

Where: C : Total flavonoid content (µg (standard flavonoids)/mg extract)

c : Concentration of sample taken (μg/ml)

m : Extract sample weight (μg)

v : Volume (ml)

4.2.8 Clean the work area and equipment if you have finished testing.

4.3. CAUTION

- 4.3.1 Conduct all weighing and testing in a low-light area to prevent rapid reaction of the solutions;
- 4.3.2 Prepare solutions one day before testing to stabilize reactions resulting from dilution;
- 4.3.3 Store solutions in a refrigerator;

Version : 06 - 2023 Validated by :